
Several improvements have been done on space charge 
calculations in the PIC code ORBIT[l], specialized for 
high intensity circular hadron accelerators. We present re- 
sults of different Poisson solvers in the presence ofconduc- 
tive walls. 

1 PIG TRACKING WITH SPACE 
CHARGE 

ORBlT uses a split operator technique. PIC particles[2] 
are propagated in the bare lattice using maps generated by 
MAD[3]. Then, space charge transverse momentum kicks 
and longitudinal energy kicks are applied. 

2 DIFFERENTL4.L POISSON SOLVERS 

To &d ihe scalar electric 9 and the magnetic vector 
potential -4, the herd is binned on a grid according to 
(,a.. gI cAt) to Gnd the charge density p. and accbrding to 
(p.,.,pLt,, &p/p), to f?nd the current density x Then. we 
solve the partial elliptic d%erential equations (Poisson’s) 
for(l) -+ P 

plqp) = -2g ; .p$(p) = -A$ (1) 

In ORBIT we implemented two differential 2D solvers 
(i) LU Decomposition plus matrix multiplication, and (ii) 
Successive Over Relaxation (SOR). 

For (& express the Laplaciau operator V” in discrete 
form on a X x ~7: grid that extends to wall. For the first of 
Eqs.(l) it is (the second is formally identical): 

-4ip;j = .LpIQ.[ : w? = -YpPfQ) (2) 

-this is an ill” x .X’ band-sparse matrix (6 is Kronecker’s), 
whose inverse is unfortunately not sparse (Fig.1) - 

“fj = -&$($j + (St+, 0; + #i., (j-i + ($&+, + ($J-, 

and multiply the inverse by the (111 x N) i; 
For (ii), solve by iteration, starting with a guess. At step 

1~ + 1 the discretied Poisson’s is 

a$’ = ; (~~~,~j + qj+, + s;q,, + *ij- i - pi.j) * 

Since the beam density evolves slowly from one space 
charge node to the next, iterative techniques show rapid 
convergence. 
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Figure 1: Direct and inverse Laplace Matrix. 

Figure 2: Solving with perfectly conducting walls 

Better iterative procedures used were: Basic SOR (most 
efficient for small grids, X, X < 128), SOR with Cheby- 
chev acceleration (large grid), and Conjugate Gradient, that 
showed the most rapid convergence. 

Fig.2 schematically shows how to achieve a solution of 
the system of Eq.(2). Walls are represented by 1) empty 
dots. the interior by ?lz full dots. The system of equations is 
exactly determined: 71. + m. known quantities, i.e. @ = 0 at 
the 7). empty dots and /, at the 1)). full dots; m + 7). unknowns, 
LG. 71). values of cfi to be calculated at the fbll dots and 
pilnngc at the ?I empty dots. 

3 3-D TREATMENT OF SPACE CHARGE 

Basic ideas: 

l Space is the independent variable; 

l To solve Poisson with all particles at the same time, 
at each space charge node in the lattice we expand the 
beam (Fig.3); 

l 3.rd dimension is obtained by slicing the beam (Fig.4) 

We use a -verse grid terminated at wall boundary, 
and a longitudinal grid that covers the length of the beam 
bunch. For long bunches in synchrotrons it is reasonable to 
make longitudinal grid steps much larger than in the trans- 
verse dimension. This is jnstified since (i) the space charge 
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F&re 3: Expanded matched beam. Beam envelope is also 
shown 
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Figure 4: Slicing a beam. Wavy lines: envelope of the 
beam (&wave). Dashed vertical lines: planes where to 
solve Poisson 

distribution varies smoothly along the beam, and (ii> the 
motion along the beam is much slower than in the trans- 
verse. 

We cut the beam in slices, long enough that the average 
density, the transverse aspect ratio of the slice, and the wall 
cor@nration around the slice can be considered constant. 

/I(& y, zj = pL (zzq) pII (2). 

and only solve the 2D transvae problem simultaneously 
in each slice by parallel computation. A slice length is a 
fraction oftbe distancebetween successive envelope waists 
and is associated with the local wall confisuration., stored 
together with the the transfer maps to completely charac- 
terize the machine. A similar approach is been used by 
L.G.Vorobiev et aI at Michigan [4] [5J 

4 COMPARISON OF 2-D SOLVERS 

We compared the SC field calculated with integral 
solvers (BF and FFT, of a previous version of ORBIT) with 
a SOR differential salver on a 2X x ‘2.X grid, conductive 
walls, and a Gaussian random beam in the chamber center 
(Fig.5). 

The BF field goes toI zero at large distance, while SOR 
ends at the walls with a Finite value, where the image charge 
density is equal to the ffield and the field lines are perpen- 
dicular. The sum of the image charges equals the total of 
the real charges. III this case the images are uniformly dis- 
tributed. 

Another example: potential and image on the walls cal- 
culated with for a Gaussian distributed beam off center in 
the chamber (Fig.6). 

Figure 5: Comparison of field between 2-D BF and SOR 
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Figure 6: Beam offset in x and y in a square chamber. (a) 
real charge and image charge, (b) p, CI,, and E 

5 3-D FORCES IN A LONG BEAM 

Transverse kicks depend on the transverse aspect ratio of 
a slice (Fig.7’). For the same $J, the force is on the average 
larger where the value of the Twiss ;? function is smaller, 
and vice-versa. This is shown in Fig.7 and Fig.8 from a 
SOR simulation of a FODO lattice. 

Once we have a’, the space charge force and the momen- 
tum kick on each macIO are 

F(Pj = g% : + = f .I’Fctf. (3) 

With (Et = Af = L/at, the transverse momentum kick 
and the longitudinal energy kick are 

Ey = pp& ; y rz Ip$)$2L,, (4) 

with the separation between successive transverse SC 
kicks LL. the separation between longitudinal kicks LII, 

Figure 7: Sticed expanded beam in 3D. The aspect ratios 
of different slices are evident 



Figure 8: (a) SC force .F,. vs. F in each of a 4@slice beam 
whose central slice is in a defocusing lattice location, (b) 
SC force cV vs. u 

Figure 9: Maximum transverse kick in a 9-slice beam 
(AGS) compared with 2D calculation 

the perveance 

with X the charge per unit length and 11~: the size of a 
square grid cell. 

Transverse kicks depend on the transverse aspect ratio 
of a slice. For the same Q, the fame is on the average 
larger where the value of the Twiss $ futldion is smaller, 
and vice-versa (Fig.9). 

A longitudinal kick calculated from the difference of po- 
tential between analogous (~1‘. .y) points in the median trans- 
verse plane of successive slices (Fig. 10) is compared with 
the traditional formula for a beam of radius cc in a round 
pipe of radius b [6]. 

2” is the impedance of free space and ‘X’ the charge gradi- 
ent along the beam. 

Fig. 11 is a 3D rendition of the longitudinal force vs. x 
in the horizontal plane !f = 0. 
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Figure 11: Longitudinal energy kick in 3D 
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